Mono- and Bis(hydrazine) Complexes of Osmium(II): Synthesis, Reactions, and X-ray Crystal Structure of the [Os(NH₂NH₂)₂{P(OEt)₃}₄](BPh₄)₂ Derivative

Gabriele Albertin,*,[†] Stefano Antoniutti,[†] Alessia Bacchi,[‡] Massimo Bergamo,[†] Emilio Bordignon,[†] and Giancarlo Pelizzi[‡]

Dipartimento di Chimica, Università di Venezia, Dorsoduro 2137, 30123 Venezia, Italy, and Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Centro CNR di Strutturistica Diffrattometrica, Università di Parma, Viale delle Scienze, 43100 Parma, Italy

Received April 24, 1997

Reaction of OsH_2P_4 [P = P(OEt)₃, PPh(OEt)₂, PPh₂OEt] with methyl triflate followed by the treatment with hydrazines gave the $[OsH(RNHNH_2)P_4]BPh_4$ (1-3) (R = H, CH₃, C₆H₅, 4-NO₂C₆H₄) derivatives. Instead, the reaction of OsH₂P₄ first with methyl triflate, then with triflic acid, and finally with an excess of the appropriate hydrazine afforded the bis(hydrazine) $[Os(RNHNH_2)_2P_4](BPh_4)_2$ (4, 5) (R = H, CH₃, C₆H₅) complexes. Also the $[Os(NH_2NH_2){P(OEt)_3}_5](BPh_4)_2$ (7) derivative was prepared. All the hydrazine complexes were fully characterized by IR and ¹H and ³¹P NMR spectra, and a single-crystal X-ray structure determination of the complex $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4](BPh_4)_2 \cdot C_2H_5OH$ (4a) is reported. The compound crystallizes in the space group $P2_1/c$ with a = 20.550(4) Å, b = 19.663(4) Å, c = 20.843(4) Å, $\beta = 99.84(9)^{\circ}$, and Z = 4. The coordination around the osmium atom is octahedral and the orientation of the ligands in the $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4]^{2+}$ cation is determined by several strong hydrogen bonds involving hydrazine nitrogen and phosphite oxygen atoms. Amidrazone complexes $[Os{\eta^2-NH=C(R1)N(R)NH_2}{P(OEt)_3}_4](BPh_4)_2$ (8, 9) (R = H, CH₃; R1 = CH₃, 4-CH₃C₆H₄) were prepared by allowing nitrile complexes [Os(R1CN)₂P₄](BPh₄)₂ to react with hydrazine NH₂-NH₂ or methylhydrazine CH₃NHNH₂. Reaction of complexes containing substituted hydrazine ligands of the type $[OsH(RNHNH_2)P_4]BPh_4$ and $[Os(RNHNH_2)_2P_4](BPh_4)_2$ $[P = P(OEt)_3; R = CH_3, C_6H_5]$ with Pb(OAc)₄ at -30 °C results in the selective oxidation of the hydrazine affording the corresponding diazene [OsH(RN=NH)- P_4 [BPh₄ (10) and [Os(RN=NH)₂P₄](BPh₄)₂ (11) derivatives. The first bis(methyldiazene) complex [Os- $(CH_3N=NH)_2$ {P(OEt)_3}₄](BPh_4)₂ (11b) was thus prepared.

Introduction

The chemistry of transition metal complexes containing diazenido RN₂, diazene RN=NH, hydrazine RNHNH₂, and other partially reduced dinitrogen ligands continues to arouse interest not only for their relationship with the intermediates of the dinitrogen fixation process but also for the diverse reactivity modes and structural properties that the diazo complexes exhibit.^{1,2} However, although a large number of studies have been reported over the past 25 years, relatively few of them are concerned with hydrazine or substituted hydrazine complexes.¹⁻³ Furthermore, the osmium compounds containing NH₂NH₂ or RNHNH₂ ligands are rare^{3b,4,5} and include, apart from the pioneering work on [OsCl₂(RNHNH₂)P₃] and [OsCl₂P₂]₂(μ -NH₂-NH₂)₂ (R = H, Ph; P = tertiary phosphine) derivatives,⁴ only two papers on the cycloocta-1,5-diene (COD) complexes⁵ [OsCl-

 $(COD)(NH_2NH_2)_3]BPh_4$ and $[Os(COD)(NH_2NH_2)_4](BPh_4)_2$ and on the carbonyl compound^{3b} $[OsBr(CO)_2(NH_2NH_2)(PPh_3)_2]-CF_3SO_3$.

Coordinate hydrazine NH₂NH₂ has been proposed as a possible intermediate in the nitrogen fixation process, has been shown to be a substrate⁶ as well as a product of functioning nitrogenase, and has been isolated by quenching the enzyme.⁷ In this context, however, much remains to be known about the chemistry of coordinate hydrazine and therefore it should be of interest to report some new results on the synthesis and on the reactivity of hydrazine derivatives.

In previous papers⁸ we have reported on the synthesis and on the properties of both mono and bis forms of aryldiazene

- (4) Chatt, J.; Leigh, G. J.; Paske, R. J. J. Chem. Soc. A 1969, 854.
- (5) Oosthuizen, H. E.; Singleton, E.; Field, J. S.; Van Niekerk, G. C. J. Organomet. Chem. 1985, 279, 433.
- (6) (a) Burgess, B. K.; Wherland, S.; Stiefel, E. I.; Newton, W. E. Biochemistry 1981, 20, 5140. (b) Davis, L. C. Arch. Biochem. Biophys. 1980, 204.
- (7) (a) Dilworth, M. J.; Eady, R. R. Biochem. J. 1991, 277, 465. (b) Thorneley, R. N.; Lowe, D. J. Biochem. J. 1984, 224, 887. (b) Evans, D. J.; Henderson, R. A.; Smith, B. E. In Bioinorganic Catalysis; Reedijk, J., Ed.; Marcel Dekker Inc.: New York, 1993. (d) Thorneley, R. N.; Eady, R. R.; Lowe, D. J. Nature (London) 1978, 272, 557.

[†] Dipartimento di Chimica, Università Ca'Foscari di Venezia.

[‡] Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma.

 ⁽a) Zollinger, H. In Diazo Chemistry II; VCH: Weinheim, Germany, 1995. (b) Sutton, D. Chem. Rev. 1993, 93, 995. (c) Kisch, H.; Holzmeier, P. Adv. Organomet. Chem. 1992, 34, 67. (d) Johnson, B. F. G.; Haymore, B. L.; Dilworth, J. R. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., 1987; Vol. 2, p 130. (e) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 197. (f) Nugent, W. A.; Haymore, B. L.; Coord. Chem. Rev. 1980, 31, 123. (g) Bottomley, F. Q. Rev. 1970, 24, 617.

 ^{(2) (}a) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. (b) Eady, R. R.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1994, 2739. (c) Sellmann, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 64.

⁽³⁾ For recent papers on hydrazine complexes see: (a) Demadis, K. D.; Malinak, S. M.; Coucouvanis, D. Inorg. Chem. 1996, 35, 4038. (b) Cheng, T.-Y.; Ponce, A.; Rheingold, A. L.; Hillhouse, G. L. Angew. Chem., Int. Ed. Engl. 1994, 33, 657. (c) Sellmann, D.; Käpler, J.; Moll, M.; Knoch, F. Inorg. Chem. 1993, 32, 960. (d) Glassman, T. E.; Vale, M. G.; Schrock, R. R. J. Am. Chem. Soc. 1992, 114, 8098. (e) Kawano, M.; Hoshino, C.; Matsumoto, K. Inorg. Chem. 1992, 31, 5158. (f) Vogel, S.; Barth, A.; Huttner, G.; Klein, T.; Zsolnai, L.; Kremer, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 303.

and aryldiazenido complexes of the iron family of the type [MH-(ArN=NH)P₄]⁺, [M(ArN=NH)₂P₄]²⁺, [M(ArN₂)P₄]⁺, and [M(ArN₂)₂P₃]²⁺ (M = Fe, Ru, Os; P = phosphite).⁸ Now, we have extended⁹ these studies to include hydrazine and substituted hydrazines as ligands, and in this paper we report the synthesis and the characterization of mono- and bis(hydrazine) complexes of osmium(II) together with some reactivity studies and an X-ray crystal structure determination.

Experimental Section

All synthetic work was carried out under an appropriate atmosphere (Ar, H₂) using standard Schlenk techniques or a Vacuum Atmosphere drybox. Once isolated, the complexes were found to be relatively stable in air but were stored under an inert atmosphere at -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line and distilled into vacuumtight storage flasks. The (NH₄)₂OsCl₆ salt was a Johnson Matthey product, used as received. Triethyl phosphite, P(OEt)₃ (Aldrich), was purified by distillation under nitrogen, while PPh(OEt)2 and the PPh2OEt were prepared by the method of Rabinowitz and Pellon.¹⁰ The hydrazines CH₃NHNH₂, C₆H₅NHNH₂, 4-NO₂C₆H₄-NHNH₂, C₆H₅CONHNH₂, and (CH₃)₂NNH₂ were Aldrich products used as received. Hydrazine, NH2NH2, was prepared by decomposition of hydrazine cyanurate (Fluka) by following the reported method.¹¹ Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on a Nicolet Magna 750 FT-IR spectrophotometer. NMR spectra (1H, ³¹P) were obtained on a Bruker AC200 spectrometer at temperatures varying between -90 and +30 °C, unless otherwise noted. 1H spectra are referred to internal tetramethylsilane, while ³¹P{¹H} chemical shifts are reported with respect to 85% H₃PO₄, with downfield shifts considered positive. The SwaN-MR software package12 has been used in treating the NMR data. The conductivities of 10^{-3} M solutions of the complexes in CH₃NO₂ at 25 °C were measured with a Radiometer CDM 83 instrument.

Synthesis of Complexes. The hydrides OsH_2P_4 [P = P(OEt)₃, PPh(OEt)₂, PPh₂OEt] were prepared as previously reported.^{8f,13}

 $[OsH(RNHNH_2)P_4]BPh_4 (1, 2) [P = P(OEt)_3 (1), PPh(OEt)_2 (2);$ $\mathbf{R} = \mathbf{H}$ (a), \mathbf{CH}_3 (b), $\mathbf{C}_6\mathbf{H}_5$ (c), 4-NO₂C₆H₄ (d)]. Methyl triflate (0.10) mmol, 11 μ L) was added to a solution of the appropriate hydride OsH₂P₄ (0.10 mmol) in 10 mL of toluene cooled to -196 °C. The reaction mixture was brought to room temperature and stirred for 90 min, and then an excess of the appropriate hydrazine (0.15 mmol) was added. After 1 h of stirring, the solvent was removed under reduced pressure giving an oil which was treated with 2 mL of ethanol containing an excess of NaBPh4 (0.30 mmol, 0.10 g). A white or pale-yellow solid slowly separated out from the resulting solution, which was filtered out and crystallized from CH₂Cl₂ (1 mL) and ethanol (3 mL); yield ≥70%. Anal. Calcd for 1a: C, 47.76; H, 7.10; N, 2.32. Found: C, 47.34; H, 7.18; N, 2.20. $\Lambda_M = 60.2 \ \Omega^{-1} \ mol^{-1} \ cm^2$. Anal. Calcd for 1b: C, 48.20; H, 7.18; N, 2.29. Found: C, 48.40; H, 6.92; N, 2.12. $\Lambda_M=55.7~\Omega^{-1}~mol^{-1}~cm^2.$ Anal. Calcd for 1c: C, 50.54; H, 6.99; N, 2.18. Found: C, 50.25; H, 7.01; N, 2.12. $\Lambda_{\rm M} = 53.0 \ \Omega^{-1} \ {\rm mol}^{-1}$ cm². Calcd for 1d: C, 48.83; H, 6.68; N, 3.16. Found: C, 48.66; H,

- (9) Albertin, A.; Antoniutti, S.; Bordignon, E.; Pattaro, S. J. Chem. Soc., Dalton Trans. 1997, 4445.
- (10) Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623.
- (11) Nachbaur, E.; Leiseder, G. Monatsh. Chem. 1971, 102, 1718.
- (12) Balacco, G. J. Chem. Inf. Comput. Sci. 1994, 34, 1235.
- (13) Albertin, G.; Antoniutti, S.; Baldan, D.; Bordignon, E. Inorg. Chem. 1995, 34, 6205.

6.80; N, 3.06. $\Lambda_{\rm M} = 54.7 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. Anal. Calcd for **2a**: C, 57.57; H, 6.42; N, 2.10. Found: C, 57.36; H, 6.55; N, 1.99. $\Lambda_{\rm M} = 54.0 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. Anal. Calcd for **2b**: C, 57.86; H, 6.50; N, 2.08. Found: C, 57.51; H, 6.60; N, 2.03. $\Lambda_{\rm M} = 58.4 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. Anal. Calcd for **2c**: C, 59.57; H, 6.36; N, 1.98. Found: C, 59.70; H, 6.26; N, 1.90. $\Lambda_{\rm M} = 56.3 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$.

$$\label{eq:characteristic} \begin{split} & [OsH\{(CH_3)_2NNH_2\}P_4]BPh_4 \ [P=P(OEt)_3 \ (1e), PPh(OEt)_2 \ (2e)]. \end{split}$$
 These complexes were prepared exactly like the related compounds 1 and 2 using an excess of (CH_3)_2NNH_2 as a reagent; yield $\geq 65\%$. Anal. Calcd for 1e: C, 48.62; H, 7.26; N, 2.27. Found: C, 48.79; H, 7.30; N, 2.15. $\Lambda_M = 54.8 \ \Omega^{-1} \ mol^{-1} \ cm^2$. Anal. Calcd for 2e: C, 58.15; H, 6.58; N, 2.05. Found: C, 58.40; H, 6.45; N, 2.12. $\Lambda_M = 55.6 \ \Omega^{-1} \ mol^{-1} \ cm^2. \end{split}$

 $[OsH(RNHNH_2)(PPh_2OEt)_4]BPh_4$ (3) $[R = CH_3$ (b), C_6H_5 (c)]. These complexes may be prepared by reacting the dihydride OsH2(PPh2-OEt)₄ first with methyl triflate and then with the appropriate hydrazine as reported for the related $P(OEt)_3$ (1) and $PPh(OEt)_2$ (2) derivatives. However, in order to obtain larger yields and pure compounds, an alternative procedure can be used, such as the following. An excess of the appropriate hydrazine (1 mmol) was added to a solution of the $[OsH(\eta^2-H_2)(PPh_2OEt)_4]BPh_4 \text{ complex}^{13} (0.10 \text{ mmol}, 0.14 \text{ g}) \text{ in } 10 \text{ mL}$ of CH₂Cl₂, and the reaction mixture was stirred at room temperature for about 24 h. The solvent was removed under reduced pressure giving an oil which was treated with 2 mL of ethanol containing an excess of NaBPh₄ (0.2 mmol, 0.07 g). The resulting solution was cooled to -10°C and vigorously stirred until a white solid separated out, which was filtered out and crystallized from CH₂Cl₂ (1 mL) and ethanol (3 mL); yield \geq 50%. Anal. Calcd for **3b**: C, 65.85; H, 5.94; N, 1.90. Found: C, 66.02; H, 5.90; N, 1.85. $\Lambda_M = 57.0 \ \Omega^{-1} \ mol^{-1} \ cm^2$. Anal. Calcd for 3c: C, 67.09; H, 5.83; N, 1.82. Found: C, 66.88; H, 5.76; N, 1.70. $\Lambda_{\rm M} = 56.1 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$.

 $[Os(RNHNH_2)_2P_4](BPh_4)_2$ (4, 5) $[P = P(OEt)_3$ (4), $PPh(OEt)_2$ (5); $\mathbf{R} = \mathbf{H}$ (a), \mathbf{CH}_3 (b), $\mathbf{C}_6\mathbf{H}_5$ (c)]. To a solution of the appropriate hydride OsH₂P₄ (0.10 mmol) in 10 mL of toluene cooled to about -196 °C was added an equimolar amount of methyl triflate (0.10 mmol, 11 μ L) and the reaction mixture brought to room temperature. After about 90 min of stirring, the solution was cooled again to -196 °C and a slight excess of triflic acid (0.11 mmol, 9.7 µL) added. The reaction mixture was then brought to room temperature and stirred for about 5 h. An excess of the appropriate hydrazine (1 mmol) was added to the solution, which was stirred for 24 h and then evaporated to dryness under reduced pressure. The oil obtained was dissolved in 2 mL of ethanol, and an excess of NaBPh₄ (0.40 mmol, 0.14 g) in 2 mL of ethanol was added. A white solid immediately separated out which was filtered out and crystallized from CH₂Cl₂ (2 mL) and ethanol (3 mL); yield \geq 80%. Anal. Calcd for 4a: C, 55.53; H, 6.99; N, 3.60. Found: C, 55.68; H, 7.03; N, 3.49. $\Lambda_M = 104.5 \ \Omega^{-1} \ mol^{-1} \ cm^2$. Anal. Calcd for **4b**: C, 56.06; H, 7.12; N, 3.53. Found: C, 56.20; H, 7.15; N, 3.40. $\Lambda_M =$ 101.7 $\Omega^{-1}\mbox{ mol}^{-1}\mbox{ cm}^2$. Anal. Calcd for 4c: C, 59.02; H, 6.84; N, 3.28. Found: C, 59.21; H, 6.69; N, 3.19. $\Lambda_{\rm M} = 107.2 \ \Omega^{-1} \ {\rm mol}^{-1}$ cm². Anal. Calcd for 5a: C, 62.71; H, 6.46; N, 3.32. Found: C, 62.53; H, 6.40; N, 3.23. $\Lambda_M = 112.9 \ \Omega^{-1} \ mol^{-1} \ cm^2.$ Anal. Calcd for 5b: C, 63.08; H, 6.59; N, 3.27. Found: C, 62.88; H, 6.35; N, 3.36. $\Lambda_{\rm M} = 115.4 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. Anal. Calcd for **5c**: C, 65.36; H, 6.36; N, 3.05. Found: C, 65.35; H, 6.29; N, 3.01. $\Lambda_{\rm M} = 109.6 \ \Omega^{-1}$ $mol^{-1} cm^2$.

[Os{(CH₃)₂NNH₂}₂{P(OEt)₃}₄](BPh₄)₂ (4e). This compound was prepared exactly like **4** and **5**; yield ≥55%. Anal. Calcd: C, 56.58; H, 7.25; N, 3.47. Found: C, 56.69; H, 7.11; N, 3.34. $Λ_M = 116.3$ Ω⁻¹ mol⁻¹ cm².

[Os(η^2 -C₆H₅CONHNH₂){P(OEt)₃}₄](BPh₄)₂ (6). This complex was prepared by a slight modification to the method used for 4 and 5, as follows. Methyl triflate (0.10 mmol, 11 μ L) was added to a cooled solution (-196 °C) of OsH₂[P(OEt)₃]₄ (0.10 mmol, 0.086 g) in 10 mL of toluene, and the reaction mixture brought to room temperature and then stirred for about 90 min. Triflic acid (0.10 mmol, 8.8 μ L) was then added to the solution cooled again to about -196 °C, and the resulting mixture was brought to room temperature and stirred for 5 h. The flask was open to the air and an excess of solid C₆H₅CONHNH₂ (0.5 mmol, 0.067 g) added to the solution together with 5 mL of CH₂-Cl₂. The suspension was stirred for 24 h and then filtered to remove

^{(8) (}a) Albertin, G.; Antoniutti, S.; Lanfranchi, M.; Pelizzi, G.; Bordignon, E. Inorg. Chem. 1986, 25, 950. (b) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. J. Am. Chem. Soc. 1986, 108, 6627. (c) Albertin, G.; Antoniutti, S.; Bordignon, E. Inorg. Chem. 1987, 26, 3416. (d) Albertin, G. Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. Inorg. Chem. 1988, 27, 829. (e) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Am. Chem. Soc. 1989, 111, 2072. (f) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1989, 2353. (g) Amendola, P.; Antoniutti, S.; Albertin, G.; Bordignon, E. Inorg. Chem. 1990, 29, 318. (h) Albertin, G.; Antoniutti, S.; Bordignon, E.; Pelizzi, G.; Ugo, P. Inorg. Chem. 1996, 35, 6245.

 $[Os(\eta^2 - O_2 SOCF_3) \{PPh(OEt)_2\}_4]BPh_4$. To a solution of OsH₂[PPh-(OEt)₂]₄ (0.32 mmol, 0.32 g) in 5 mL of toluene cooled to about -196 °C was added an equimolar amount of CF₃SO₃CH₃ (0.32 mmol, 36 μ L), and the reaction mixture was brought to room temperature and stirred for 90 min. An excess of CF₃SO₃H (0.96 mmol, 86 µL) was then added to the resulting solution previously cooled to about -196°C. After the reaction mixture was brought to 20 °C, it was stirred for 3 h and then the solvent removed under reduced pressure. The oil obtained was treated with ethanol (4 mL), and then an excess of NaBPh4 (1 mmol, 0.34 g) in 3 mL of ethanol was added to the resulting solution. A white solid slowly separated out, which was filtered out and crystallized fractionally from ethanol to separate the triflate complex $[Os(\eta^2-O_2SOCF_3)P_4]BPh_4$ from the dihydrogen $[OsH(\eta^2-H_2)P_4]BPh_4$ compound present in the solid obtained; yield $\geq 40\%$. Anal. Calcd: C, 53.79; H, 5.56. Found: C, 53.49; H, 5.80. $\Lambda_{\rm M} = 53.4 \ \Omega^{-1} \ {\rm mol}^{-1}$ cm². ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.60-6.70 (m, 40 H, Ph), 3.88 (m, br, 16 H, CH₂), 1.24 (t, 24 H, CH₃). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 25 °C; δ): spin system A₂B₂, $\delta_A = 118.1$, $\delta_B = 77.8$, $J_{AB} = 31$ Hz.

 $[Os(RCN)_2P_4](BPh_4)_2$ [R = CH₃, 4-CH₃C₆H₄; P = P(OEt)₃ and **PPh(OEt)**₂]. To a solution of the appropriate hydride OsH_2P_4 (0.5 mmol) in 10 mL of toluene cooled to about -196 °C was added an equimolar amount of methyl triflate (0.5 mmol, 55 μ L) and the reaction mixture, brought to room temperature, stirred for 90 min. An excess of the appropriate nitrile (25 mmol) and then an excess of triflic acid (1.5 mmol, 132 μ L) were added to the solution cooled again to -196 °C, which was brought to room temperature and stirred for 24 h. The solvent was removed under reduced pressure giving an oil which was treated with 5 mL of ethanol. The addition of an excess of NaBPh4 (2 mmol, 0.68 g) in 3 mL of ethanol caused the precipitation of a white solid, which was filtered out and crystallized from CH2Cl2 (4 mL) and ethanol (5 mL); yield \geq 80%. Anal. Calcd for R = CH₃ and P = P(OEt)3: C, 57.94; H, 6.78; N, 1.78. Found: C, 58.10; H, 6.63; N, 1.70. $\Lambda_{\rm M} = 115.2 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.40-6.80 (m, 40 H, Ph), 4.15-3.90 (m, 24 H, CH₂), 1.72 (s, 6 H, CH₃ nitrile), 1.29, 1.26 (t, 36 H, CH₃ phos). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 25 °C; δ): spin system A₂B₂, $\delta_A = 81.0$, $\delta_B = 73.4$, $J_{AB} = 44.1$ Hz. Anal. Calcd for $R = CH_3$ and $P = PPh(OEt)_2$: C, 64.86; H, 6.27; N, 1.64. Found: C, 64.80; H, 6.31; N, 1.68. $\Lambda_{\rm M} = 117.7 \ \Omega^{-1} \ {\rm mol}^{-1}$ cm². ¹H NMR [(CD₃)₂CO, 25 °C; δ]: 7.90–6.70 (m, 60 H, Ph), 4.25– 4.00 (m, 16 H, CH₂), 1.75 (s, 6 H, CH₃ nitrile), 1.45, 1.44 (t, 24 H, CH₃ phos). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): spin system A₂B₂, δ _A = 112.5, δ_B = 107.4, J_{AB} = 33.6 Hz. Anal. Calcd for R = 4-CH₃C₆H₄ and $P = P(OEt)_3$: C, 61.18; H, 6.65; N, 1.62. Found: C, 60.94; H, 6.41; N, 1.58. $\Lambda_{\rm M} = 108.4 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. IR (KBr): 2263 [m, ν -(CN)] cm⁻¹. ¹H NMR [(CD₃)₂CO, 25 °C; δ]: 7.85-6.70 (m, 48 H, Ph), 4.45-4.20 (m, 24 H, CH₂), 2.44 (s, 6 H, CH₃ nitrile), 1.37, 1.34 (t, 36 H, CH₃ phos). ${}^{31}P{}^{1}H$ NMR [(CD₃)₂CO, 25 °C; δ]: spin system A_2B_2 , $\delta_A = 84.0$, $\delta_B = 77.4$, $J_{AB} = 44.0$ Hz. Anal. Calcd for R = $4-CH_3C_6H_4$ and P = PPh(OEt)₂: C, 67.31; H, 6.19; N, 1.51. Found: C, 67.55; H, 6.03; N, 1.55. $\Lambda_M = 110.0 \ \Omega^{-1} \ mol^{-1} \ cm^2$. IR (KBr): 2258 [m, ν (CN)] cm⁻¹. ¹H NMR [(CD₃)₂CO, 25 °C; δ]: 8.00–6.70 (m, 68 H, Ph), 4.20-3.90 (m, 16 H, CH₂), 2.40 (s, 6 H, CH₃ nitrile), 1.45, 1.38 (t, 24 H, CH₃ phos). ${}^{31}P{}^{1}H$ NMR [(CD₃)₂CO, 25 °C; δ]: spin system A₂B₂, $\delta_A = 108.9$, $\delta_B = 104.3$, $J_{AB} = 33.4$ Hz.

 $[OsH{P(OEt)_3}_5]BPh_4$ and $OsCl_2[P(OEt)_3]_4$. A 50-mL threenecked round-bottomed flask was charged with 0.5 g (1.2 mmol) of $(NH_4)_2OsCl_6$, 20 mL of anhydrous ethanol, 3.7 mL (24 mmol) of P(OEt)_3, and about 1 g (15 mmol) of zinc dust. The reaction mixture was refluxed for 14 h and filtered, and then the solvent was removed under reduced pressure. The oil obtained was treated with ethanol (5 mL) giving a pale-yellow solution which separated a small amount (about 7–8%) of a yellow solid characterized as $OsCl_2[P(OEt)_3]_4$. After filtration, an excess of NaBPh₄ (2 mmol, 0.68 g) in 2 mL of ethanol was added and the resulting solid formed was filtered out and crystallized from ethanol; yield ≥55%. Anal. Calcd for $[OsH{P(OEt)_3}_{3}]BPh_4$: C, 48.36; H, 7.21. Found: C, 48.41; H, 7.15. $\Lambda_M = 51.5 \ \Omega^{-1} \ mol^{-1} \ cm^2$. IR (KBr): 1990 [m, $\nu(OsH)$] cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.30–6.70 (m, 20 H, Ph), 3.96 (m, 30 H, CH₂), 1.25 (t, 45 H, CH₃), -11.16 to -11.92 (m, 1 H, hydride). ³¹P{¹H} NMR (CD₂Cl₂, -90 °C; δ): spin system AB₄, $\delta_A = 105.7$, $\delta_B = 99.3$, $J_{AB} = 34 \ Hz$. Anal. Calcd for OsCl₂[P(OEt)₃]₄: C, 31.14; H, 6.53. Found: C, 31.16; H, 6.84. ¹H NMR (CD₂Cl₂, 25 °C; δ): 4.19 (m, 24 H, CH₂), 1.22 (t, 36 H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): 83.5 s ($J_{31}P_{1}^{187}O_8 = 293.4 \ Hz$).

[Os(NH₂NH₂){P(OEt)₃}₅](BPh₄)₂ (7). To a solution under hydrogen (1 atm) of [OsH{P(OEt)₃}₅]BPh₄ (0.10 mmol, 0.134 g) in 10 mL of CH₂Cl₂ was added an equimolar amount of HBF₄•Et₂O (0.10 mmol, 15 μL of a 54% solution in Et₂O) and the reaction mixture stirred for 24 h. An excess of NH₂NH₂ (1 mmol, 32 μL) was added, and after the H₂ atmosphere was replaced with an argon one, the solution was stirred for about 3 h. The solvent was removed under reduced pressure giving an oil which was treated with ethanol (2 mL) containing an excess of NaBPh₄ (0.20 mmol, 0.068 g). A white solid slowly separated out, which was filtered out and crystallized from CH₂Cl₂ (2 mL) and ethanol (3 mL); yield ≥60%. Anal. Calcd: C, 55.39; H, 7.09; N, 1.66. Found: C, 55.54; H, 6.91; N, 1.58. Λ_M = 108.0 Ω⁻¹ mol⁻¹ cm².

 $[Os{\eta^2-NH=C(R1)N(R)NH_2}{P(OEt)_3}_4](BPh_4)_2 (8, 9) [R1 = CH_3]$ (8), 4-CH₃C₆H₄ (9); $\mathbf{R} = \mathbf{H}$ (a), CH₃ (b)]. An excess of the appropriate hydrazine (1.2 mmol) was added to a solution of [Os(R1CN)₂P₄](BPh₄)₂ (0.15 mmol) in 15 mL of 1,2-dichloroethane and the reaction mixture refluxed for 3 h. The solvent was removed under reduced pressure giving an oil which was treated with 3 mL of ethanol. The addition of a slight excess of NaBPh₄ (0.2 mmol, 68 mg) to the resulting solution caused the precipitation of a white solid, which was filtered out and crystallized from CH₂Cl₂ (2 mL) and ethanol (4 mL); yield \geq 50%. Anal. Calcd for 8a: C, 56.74; H, 6.89; N, 2.68. Found: C, 56.64; H, 6.65; N, 2.50. $\Lambda_{\rm M} = 112.5 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$. Anal. Calcd for **8b**: C, 57.00; H, 6.95; N, 2.66. Found: C, 57.13; H, 6.90; N, 2.54. $\Lambda_{\rm M}$ = 116.6 Ω^{-1} mol⁻¹ cm². Anal. Calcd for **9a**: C, 58.50; H, 6.81; N, 2.56. Found: C, 58.72; H, 6.67; N, 2.40. $\Lambda_M = 121.4~\Omega^{-1}~mol^{-1}$ cm². Anal. Calcd for 9b: C, 58.73; H, 6.88; N, 2.54. Found: C, 58.48; H, 6.71; N, 2.49. $\Lambda_{\rm M} = 113.9 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$.

[Os(CH₃N=NH)₂{P(OEt)₃}₄](BPh₄)₂ (11b). A sample of [Os(CH₃-NHNH₂)₂{P(OEt)₃}₄](BPh₄)₂ (0.10 mmol, 0.16 g) was placed in a threenecked 25-mL round-bottomed flask fitted with a solid-addition side arm containing an excess of Pb(OAc)₄ (0.30 mmol, 0.14 g). Dichloromethane (10 mL) was added, the solution cooled to −30 °C, and the Pb(OAc)₄ added portionwise over 20−30 min to the cold stirred solution. The solution was then brought to room temperature and filtered, and the solvent was removed under reduced pressure giving an oil. The addition of ethanol (3 mL) containing an excess of NaBPh₄ (0.2 mmol, 0.068 g) caused the separation of an orange solid, which was filtered out and crystallized from CH₂Cl₂ (2 mL) and ethanol (3 mL); yield ≥60%. Anal. Calcd: C, 56.20; H, 6.88; N, 3.54. Found: C, 56.32; H, 6.93; N, 3.44. $\Lambda_M = 114.2 \ \Omega^{-1} \ mol^{-1} \ cm^2$.

[OsH(C₆H₅N=NH){P(OEt)₃}₄]BPh₄ (10c) and [Os(C₆H₅N=NH)₂ {P(OEt)₃}₄](BPh₄)₂ (11c). These complexes were prepared by oxidation with an excess of Pb(OAc)₄ of the corresponding hydrazine complexes [OsH(C₆H₅NHNH₂){P(OEt)₃}₄]BPh₄ and [Os(C₆H₅NHNH₂)₂-{P(OEt)₃}₄](BPh₄)₂, respectively, following the same procedure reported for the methylhydrazine [Os(CH₃NHNH₂)₂{P(OEt)₃}₄](BPh₄)₂ derivative; yield ≥65%. Anal. Calcd for 10c: C, 50.62; H, 6.84; N, 2.19. Found: C, 50.86; H, 6.89; N, 2.11. Λ_M = 53.5 Ω⁻¹ mol⁻¹ cm². Anal. Calcd for 11c: C, 59.16; H, 6.62; N, 3.28. Found: C, 59.41; H, 6.49; N, 3.17. Λ_M = 107.1 Ω⁻¹ mol⁻¹ cm².

 $[Os(\eta^2-O_2CCH_3)_{4}]PO(DEt)_{3}_{4}]BPh_4$ (12). This complex was obtained by the oxidation reaction with Pb(OAc)_4 of both the hydrazine [OsH-(NH₂NH₂){P(OEt)_{3}}_{4}]BPh_4 and [Os(NH₂NH₂)_{2}{P(OEt)_{3}}_{4}](BPh_4)_2 derivatives. In a typical preparation a solution of $[Os(NH_2NH_2)_{2}{P(OEt)_{3}}_{4}]$ - $(BPh_4)_2$ (0.10 mmol, 0.16 g) in 10 mL of CH₂Cl₂ cooled to -30 °C is oxidized with solid Pb(OAc)_4 (0.20 mmol, 0.089 g) added portionwise over a 20-30 min period. The solution was then filtered and the solvent removed under reduced pressure giving an oil. This oil was treated with 4 mL of ethanol containing an excess of NaBPh_4 (0.2 mmol, 0.068

Table 1. Crystal and Structure Refinement Data for $[Os(NH_2NH_2)_2{P(OEt)_3}_4](BPh_4)_2 \cdot C_2H_5OH$ (**4a**)

empirical formula	$C_{74}H_{114}B_2N_4O_{13}O_5P_4$
fw	1603.45
temp	20(2) °C
wavelength	1.541 84 Å
cryst system	monoclinic
space group	$P2_{1}/c$
unit cell dimens	a = 20.550(4) Å
	$b = 19.663(4) \text{ Å}, \beta = 99.84(9)^{\circ}$
	c = 20.843(4) Å
V	8298(3) Å ³
Ζ	4
D(calcd)	1.283 g/cm ³
abs coeff	4.096 mm^{-1}
F(000)	3344
θ range for data collen	3-70°
index ranges	$-25 \le h \le 24, 0 \le k \le 23, 0 \le l \le 25$
reflens colled	16 177
indepdt reflens	$15\ 738\ [R(int) = 0.1307]$
refinement method	full-matrix least-squares on F^2
data/restraints/params	15738/927/815
goodness-of-fit on F^2	0.842
final <i>R</i> indices ^{<i>a</i>} $[I > 2\sigma(I)]$	R1 = 0.0909, wR2 = 0.2168
R indices (all data)	R1 = 0.3598, $wR2 = 0.3906$
largest ΔF peak and hole	$0.548 \text{ and } -1.903 \text{ e/Å}^3$
$a \mathbf{D} 1 = \mathbf{\Sigma} \mathbf{E} \mathbf{E} \mathbf{\Sigma} \mathbf{E}$	$h = m \mathbf{P} 2 - f \mathbf{\Sigma} h = (E^2) - E^2 \lambda^2 1 / \mathbf{\Sigma} h = (E^2)^2 1 / 2$

^{*a*} R1 = $\Sigma ||F_o| - |F_c||/\Sigma |F_o|$; wR2 = { $\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]^{1/2}$, w = 1/{ $\sigma^2(F_o^2)$ + [0.17(2 $F_c^2 + F_o^2$)/3]²}.

Table 2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å² $\times 10^4$) (One-Third Trace of the Diagonalized Matrix), with Esd's in Parentheses for Relevant Non-Hydrogen Atoms

atom	x/a	y/b	z/c	$U_{ m eq}$
Os	2164.5(4)	60.7(4)	2244.3(5)	912(4)
P1	2802(3)	-22(3)	1442(3)	971(23)
P2	2886(3)	779(3)	2809(3)	923(24)
P3	1442(3)	185(3)	2976(3)	972(26)
P4	2614(3)	-886(3)	2753(4)	1045(30)
N1	1471(7)	-572(8)	1576(8)	1054(77)
N2	786(11)	-569(10)	1653(10)	1523(119)
N3	1685(8)	925(7)	1689(9)	1095(81)
N4	1167(12)	787(10)	1168(12)	1592(119)
01	2717(6)	626(7)	958(8)	1230(73)
O2	3556(6)	-111(7)	1642(7)	1178(66)
O3	2565(7)	-612(8)	947(8)	1448(84)
O4	3304(8)	1193(8)	2419(8)	1713(94)
05	2602(8)	1345(8)	3164(10)	1808(110)
O6	3388(8)	372(11)	3350(8)	1993(101)
O7	1034(8)	-455(7)	3054(7)	1331(77)
08	907(6)	773(6)	2725(7)	1179(67)
O9	1669(8)	467(9)	3684(10)	1551(93)
O10	2625(7)	-919(6)	3491(8)	1301(76)
011	2150(6)	-1513(6)	2456(7)	1304(72)
O12	3281(8)	-1160(8)	2623(10)	1581(93)

g), and the resulting solution was vigorously stirred at 0 °C until a white solid separated out, which was filtered out and crystallized from ethanol; yield \geq 65%. Anal. Calcd: C, 48.70; H, 6.78. Found: C, 48.92; H, 6.60. $\Lambda_{\rm M} = 50.7 \ \Omega^{-1} \ {\rm mol}^{-1} \ {\rm cm}^2$.

X-ray Crystallography. The X-ray diffractometric analysis was performed on a colorless crystal with a CAD4 diffractometer. Cu K α radiation ($\lambda = 1.541$ 84 Å) was used because the crystal was expected to diffract poorly, even in the presence of heavy scatters, due to possible radiation damage and solvent loss. Automatic peak search, centering, and indexing procedures established a monoclinic primitive lattice, and systematic extinctions together with centric intensities statistics identified unambiguously the space group as $P2_1/c$. The intensity of a reference reflection was measured periodically throughout data collection to monitor crystal decay. Intensity loss of more than 50% was detected, and data were rescaled accordingly. Table 1 reports crystal data and details of data collection and structure refinement. The intensity data were processed with a peak-profile procedure and

corrected for Lorentz and polarization effects. The phase problem was solved by direct methods, using SIR92,14 which allowed one to retrieve all non-hydrogen atoms. Neutral atomic scattering factors were employed, those for non-hydrogen atoms being corrected for anomalous dispersion. Hydrogen atoms were placed at idealized positions, riding on their carrier atoms, with the exception of those belonging to hydrazine, whose presence and geometry were to be confirmed experimentally. Several cycles of full-matrix least-squares refinement were performed on F^2 till the isotropic model had reached convergence, using SHELXL96.15 A total of 12 anisotropic scaling factors were then refined to model an empirical absorption surface according to the method of Parkin, Moezzi, and Hope,¹⁶ as implemented in SHELXL96. The validity of this absorption correction was supported by the improvement of the rms R factor (wR2) from 0.468 to 0.452 upon the introduction of the 12 parameters. This was also checked with the cross-validation method implemented in SHELXPRO¹⁷ by refining the 12 parameters of the absorption model on a set of about 14 000 reflections and calculating the consequent R-factor drop on the remaining 1600 "unbiased free reflections". The resultant "local free-R" dropped from 0.379 to 0.363 confirming the significance of the correction. The values of the 12 anisotropic scaling factors refined with the isotropic model on all reflections were held fixed in the subsequent structure refinements to prevent instability due to their correlation with atomic anisotropic thermal motion. Anisotropic thermal displacement parameters were introduced and refined for all nonhydrogen atoms; at this stage a careful inspection of the Fourier density map allowed us to locate the hydrazinic hydrogens, which were restrained to maintain correct geometry and realistic thermal factors during the subsequent refinements. In order to improve the observation to parameter ratio, phenyl rings were constrained to rigid group behavior, and rigid bond and isotropicity restraints were applied on the thermal motion of all carbons. The final model includes also a highly mobile ethanol molecule, which was detected in the last stages of the refinement. The final geometry was analyzed by the program PARST95,18 and the drawings were made with ZORTEP.19 All the calculations were performed on ENCORE91 computer at the Centro di Studio per la Strutturistica Diffrattometrica del CNR in Parma, Italy. Besides the use of data from the original literature, data for comparison with other compounds were retrieved and analyzed by the software packages of the Cambridge Structural Database.²⁰ Table 2 reports final fractional atomic coordinates for non-hydrogen atoms.

Results and Discussion

Mono- and Bis(hydrazine) Complexes. Hydride-hydrazine complexes [OsH(RNHNH₂)P₄]BPh₄ (1-3) were prepared by treating hydride species OsH₂P₄ first with methyl triflate and then with an excess of the appropriate RNHNH₂ ligand. Bis-(hydrazine) derivatives [Os(RNHNH₂)₂P₄](BPh₄)₂ (**4**, **5**), instead, can be obtained by sequential reaction of the hydrides OsH₂P₄ first with methyl triflate, then with triflic acid and, finally, with an excess of the appropriate hydrazine as shown in Scheme 1. The reaction of the hydride species OsH₂P₄ with CF₃SO₃CH₃ proceeds with evolution of CH₄ (by ¹H NMR) and the probable formation of the triflate complex²¹ OsH(η^{1} -OSO₂CF₃)P₄ which affords, by substitution of the CF₃SO₃⁻ ligand, the final hydrazine complexes **1**-**3**. Compounds **3**, containing the PPh₂-

(18) Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659.

⁽¹⁴⁾ Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.

⁽¹⁵⁾ Sheldrick, G. SHELXL96, University of Goettingen, Germany, 1996.

⁽¹⁶⁾ Parkin, S.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53.

⁽¹⁷⁾ Sheldrick, G. SHELXPRO, University of Goettingen, Germany, 1996.

⁽¹⁹⁾ Zsolnai, L.; Pritzkow, H. ZORTÉP. ORTEP original program modified for PC, University of Heidelberg, Germany, 1994.

⁽²⁰⁾ Allen, F. H.; Kennard, O. Chem. Design Automation News 1993, 8, 1 and 31–37.

⁽²¹⁾ Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1989, 719.

Scheme 1

$$OsH_2P_4 \xrightarrow{CF_3SO_3CH_3, Argon} [OsH(\eta^1 - OSO_2CF_3)P_4] \rightarrow toluene, -CH_4$$

$$\frac{1}{BPh_4} = \frac{1}{1,2,3}$$

$$OsH_2P_4 \xrightarrow{CF_3SO_3CH_3, Argon} [OsH(\eta^1 - OSO_2CF_3)P_4] \rightarrow Iouene, -CH_4$$

$$\frac{CF_3SO_3H}{-H_2} \quad [Os(\eta^2 - O_2SOCF_3)P_4]^+ \rightarrow \frac{excess RNHNH_2}{BPh_4} \quad [Os(RNHNH_2)_2P_4](BPh_4)_2$$

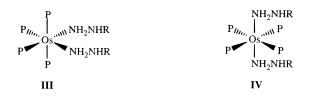
 $P = P(OEt)_3 (1,4), PPh(OEt)_2 (2,5), PPh_2OEt (3); R = H (a), CH_3 (b), C_6H_5 (c), 4-NO_2C_6H_4 (d).$

OEt phosphine ligand, can also be obtained by substitution with hydrazines of the η^2 -H₂ ligand in [OsH(η^2 -H₂)(PPh₂OEt)₄]⁺ cations.¹³

Treatment of the η^1 -triflate OsH(η^1 -OSO₂CF₃)P₄ complex with triflic acid may result in a protonation reaction giving the dihydrogen intermediate $[Os(\eta^2-H_2)(\eta^1-OSO_2CF_3)P_4]^+ CF_3SO_3^$ which, by loss of H₂, affords the η^2 -triflate [Os(η^2 -O₂SOCF₃)P₄]⁺-CF₃SO₃⁻ derivative. Although the presence of a dihydrogen complex was not detected in the reaction mixture, its formation is plausible on the basis of the known properties^{8g,13} of the osmium hydrides containing phosphite ligands. Furthermore, the achievement and the characterization of the η^2 -triflate $[Os(\eta^2-O_2SOCF_3){PPh(OEt)_2}_4]BPh_4$ complex seems to support the proposed reaction path. Substitution of the η^2 -triflate with RNHNH₂ is easy and gives the bis(hydrazine) [Os(RNHN- $H_2)_2P_4]^{2+}$ cations which can be separated as BPh₄ salts and characterized. It is worth noting that also the N,N-dimethylhydrazine complexes [OsH{(CH₃)₂NNH₂}P₄]BPh₄ (1e, 2e) and $[Os{(CH_3)_2NNH_2}_2P_4](BPh_4)_2$ (4e) can be obtained by following the method reported in Scheme 1.

Good analytical data were obtained for all the hydrazine complexes 1-5, which are white solids stable in the air and in solutions of polar organic solvents, where they behave as 1:1 (1-3) or 2:1 (4, 5) electrolytes.²² The IR and NMR data (Table 3) support the proposed formulation and allow a geometry in solution to be established.

The presence of the hydrazine ligand in all the complexes 1-5 is confirmed by the IR spectra, which show the characteristic ν (NH) and δ (NH₂) bands at 3386–3219 and at 1618–1593 cm⁻¹, respectively. Furthermore, in the [OsH(RNHNH₂)-P₄]BPh₄ (1–3) derivatives the absorption due to the ν (OsH) is also observed at 2078–1926 cm⁻¹.


The ¹H NMR spectra confirm the presence of the hydrazine ligand showing the characteristic NH and NH₂ signals, which were clearly assigned by accurate integration and homodecoupling experiments and are reported in Table 3. The spectra also show that, in the case of NH₂NH₂ complexes, two NH₂ proton signals are present for all the mono- and bis(hydrazine) complexes suggesting the presence of a η^1 -coordination for the hydrazine ligand. Furthermore, the ³¹P{¹H} NMR spectra allow one to assign a geometry in solution for all the osmium compounds. In particular, the ³¹P spectra of the [OsH-

(22) Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.

 $(\text{RNHNH}_2)\text{P}_4]^+$ (1-3) cations appear, for all the complexes except 2a,b, as A₂BC or AB₂C multiplets, which can be simulated with the parameters reported in Table 3 and suggest the existence of a *cis* geometry **I**. This geometry is also

confirmed by the presence, in the ¹H NMR spectra, of a complicated multiplet between -7.36 and -9.72 ppm for the hydride ligand. Surprisingly, in the temperature range between +30 and -90 °C, the ³¹P NMR spectra of the [OsH(NH₂NH₂)-{PPh(OEt)₂}₄]BPh₄ (2a) and [OsH(CH₃NHNH₂){PPh(OEt)₂}₄]-BPh₄ (**2b**) derivatives appear as sharp singlets, suggesting that the hydride and the hydrazine ligands are in a mutually trans position as in type II structure. This different geometry observed in the two compounds 2a,b with respect to the other monohydrazine compounds is, in some aspects, rather difficult to explain taking also into account that the two compounds were prepared exactly as the other derivatives 1-3 and that no isomerization was observed in solution for all the monohydrazine derivatives. A steric influence of the ancillary phosphite ligands in determining the geometry of the two complexes 2a,b seems to be unprobable, because the steric hindrance (cone angle)²³ of the PPh(OEt)₂ ligand is just intermediate between those of the P(OEt)₃ and of the PPh₂OEt, whose related hydrazine and methylhydrazine $[OsH(RNHNH_2)P_4]^+$ (1a, 3a; 1b, 3b) derivatives show a cis geometry. However, also the electronic properties²³ of the PPh(OEt)₂ ligand are intermediate between those of P(OEt)₃ and PPh₂OEt, while, instead, NH₂-NH₂ and CH₃NHNH₂ are different from the other arylhydrazines. Probably, a combination of steric and electronic factors of both the phosphite and the hydrazine ligands favor a cis or a trans arrangement of the ligands, as observed in our hydrazine derivatives. As a result, both the N,N-dimethylhydrazine complexes [OsH{(CH₃)₂NNH₂}P₄]BPh₄ (1e, 2e) containing the $P(OEt)_3$ and the PPh(OEt)_2 ligands show a type-I *cis* geometry. Furthermore, on the basis of the A2B2 multiplets observed in the ${}^{31}P{}^{1}H$) NMR spectra, a *cis* arrangement (III) of the two

RNHNH₂ ligands can also be proposed in solution for all the bis(hydrazine) $[Os(RNHNH_2)_2P_4](BPh_4)_2$ (4, 5) complexes, except for **5a,b**. Such a *cis* geometry was also observed in the solid state (X-ray, see below) for the $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4]$ -(BPh₄)₂ (4a) derivative and is shown in Figure 1.

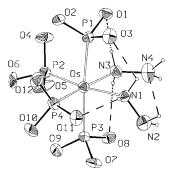
For the related $[Os(NH_2NH_2)_2\{PPh(OEt)_2\}_4](BPh_4)_2$ (**5a**) and $[Os(CH_3NHNH_2)_2\{PPh(OEt)_2\}_4](BPh_4)_2$ (**5b**) complexes, instead, the ³¹P NMR spectra indicate the presence of a *trans* geometry (**IV**) (sharp singlet at 108.1 and 108.2 ppm) in agreement with the presence, for the bis(hydrazine) derivative

 ^{(23) (}a) Tolman, C. A. *Chem. Rev.* **1977**, 77, 313. (b) Rahman, M. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics* **1989**, 8, 1.

Table 3. IR and NMR Spectroscopic Data for the Osmium Complexes

	compound	IR^a		¹ H NMR ^{b,c}		spin	³¹ P{ ¹ H} NMR ¹
10.	formula	(cm^{-1})	assgnt	(ppm)	assgnt	syst	(ppm; <i>J</i> , Hz)
a	$[OsH(NH_2NH_2){P(OEt)_3}_4]BPh_4$	3374 m	ν (NH)	4.67 m, br	OsNH ₂	A_2BC	$\delta_{\rm A} = 103.6$
		3330 m		3.33 m, br	NH_2		$\delta_{\rm B} = 103.6$
		3273 m		4.20-3.75 m	CH ₂		$\delta_{\rm C} = 97.5$
		1956 m	ν (OsH)	1.30, 1.25, 1.21 t	CH ₃		$J_{\rm AB} = 34.0$
		1593 m	$\delta(\text{NH}_2)$	-8.55 to -9.54 m	H hydride		$J_{\rm AC} = 42.6$
		22.40		4.50 1	0.144		$J_{\rm BC} = 27.3$
b	$[OsH(CH_3NHNH_2){P(OEt)_3}_4]BPh_4$	3348 m	ν (NH)	4.59 m, br	OsNH ₂	A_2BC	$\delta_{\rm A} = 103.7$
		3314 m		2.77 m, br	NH		$\delta_{\rm B} = 103.5$
		1927 m	$\nu(\text{OsH})$	4.15-3.75 m	CH ₂		$\delta_{\rm C} = 98.0$
				2.44 d, br	CH ₃ NH		$J_{AB} = 34.1$
				1.29, 1.25, 1.21 t	CH ₃ H hydride		$J_{\rm AC} = 43.0$
2	$[O_{\alpha}U(C \cup NUNU)(D(OE_{1}))]$ 1DDb	3363 m	(NILI)	-8.73 to -9.72 m	OsNH ₂	AB ₂ C	$J_{\rm BC} = 27.7$ $\delta = 102.8$
-	$[OsH(C_6H_5NHNH_2){P(OEt)_3}_4]BPh_4$	3314 w	$\nu(\text{NH})$	5.35 m, br 4.85 br	NH	AD_2C	$\delta_{\rm A} = 102.8$ $\delta_{\rm B} = 102.6$
		3301 m		4.18-3.80 m	CH ₂		$\delta_{\rm C} = 96.4$
		1930 m	ν (OsH)	1.28, 1.24, 1.19 t	CH ₂ CH ₃		$J_{AB} = 34.8$
		1604 m	$\delta(\rm NH_2)$	-8.54 to -9.53 m	H hydride		$J_{\rm AC} = 27.5$
		1001111	0(1112)		11 ily allae		$J_{\rm BC} = 43.1$
ł	$[OsH(4-NO_2C_6H_4NHNH_2){P(OEt)_3}_4]BPh_4^e$	3386 m	$\nu(\rm NH)$	6.33 m, br	NH	AB ₂ C	$\delta_{\rm A} = 104.1$
-		3365 m	, (111)	5.79 m, br	OsNH ₂	11220	$\delta_{\rm B} = 103.7$
		3301 m		4.32-3.93 m	CH ₂		$\delta_{\rm C} = 96.7$
		1926 m	ν (OsH)	1.35, 1.28, 1.22 t	CH ₃		$J_{AB} = 34.9$
		1601 m	$\delta(\rm NH_2)$	-8.21 to -9.21 m	H hydride		$J_{\rm AC} = 28.2$
			/		-		$J_{\rm BC} = 43.4$
е	$[OsH{(CH_3)_2NNH_2}{P(OEt)_3}_4]BPh_4$	3308 m	$\nu(\text{NH})$	4.63 m, br	OsNH ₂	A_2BC	$\delta_{\rm A} = 102.7$
		1963 m	$\nu(OsH)$	4.13-3.80 m	CH_2		$\delta_{\rm B} = 101.4$
				2.41 s	$(CH_3)_2N$		$\delta_{\rm C} = 97.8$
				1.27, 1.25, 1.21 t	CH_3		$J_{AB} = 36.1$
				-8.55 to -9.31 m	H hydride		$J_{\rm AC} = 43.0$
							$J_{\rm BC} = 25.2$
a	[OsH(NH ₂ NH ₂){PPh(OEt) ₂ } ₄]BPh ₄	3370 m	ν (NH)	4.80 m, br	OsNH ₂		125.8 s
		3334 m		3.14 m, br	NH_2		
		3317 m		4.02-3.47 m	CH ₂		
		3259 w		1.14, 1.12 t	CH ₃		
		2063 m	$\nu(\text{OsH})$	-18.07 qi	H hydride		
		1603 m	$\delta(NH_2)$	$J_{\rm PH} = 18 \text{ Hz}$			105.0
b	$[OsH(CH_3NHNH_2){PPh(OEt)_2}_4]BPh_4$	3328 m	$\nu(\text{NH})$	4.64 m, br	OsNH ₂		125.9 s
		3304 w		3.19 m	NH		
		3256 w 2078 m	v(OsH)	4.02-3.40 m 2.42 d	CH ₂ CH ₃ NH		
		2078 m 1611 m	$\delta(NH_2)$	$J_{\rm HH} = 6.4 {\rm Hz}$	СПЗИП		
		1011 III	$O(1\sqrt{11}2)$	1.13 t	CH ₃		
				-18.02 qi	H hydride		
				$J_{\rm PH} = 18 {\rm Hz}$	11 flydride		
с	$[OsH(C_6H_5NHNH_2){PPh(OEt)_2}_4]BPh_4^e$	3375 w	$\nu(\rm NH)$	5.39 t, br	NH	AB ₂ C	$\delta_{\rm A} = 126.3$
-	[• • • • (• • • • • • • • • • • • • •	3293 m	. ()	5.04 m, br	OsNH ₂		$\delta_{\rm B} = 124.7$
		3219 w		4.10-3.30 m	CH ₂		$\delta_{\rm C} = 115.9$
		1983 m	ν (OsH)	1.26, 1.15, 1.13,	-		$J_{AB} = 23.6$
		1600 m	$\delta(NH_2)$	1.03, 0.97 t	CH ₃		$J_{\rm AC} = 21.0$
			/	-7.98 to -8.70 m	H hydride		$J_{\rm BC} = 28.4$
e	$[OsH{(CH_3)_2NNH_2}{PPh(OEt)_2}_4]BPh_4$	3326 m	$\nu(\text{NH})$	4.35 br	OsNH ₂	A_2BC	$\delta_{\rm A} = 124.8$
				4.00-3.50 m	CH_2		$\delta_{\rm B} = 122.7$
		3282 m					\$ 1160
		2005 m	$\nu(\text{OsH})$	2.35 s	$(CH_3)_2N$		$\delta_{\rm C} = 116.2$
			$\nu(\text{OsH})$ $\delta(\text{NH}_2)$	2.35 s 1.27, 1.20, 1.13,			$J_{\rm AB} = 25.6$
-		2005 m		2.35 s 1.27, 1.20, 1.13, 0.95 t	CH ₃		$J_{AB} = 25.6$ $J_{AC} = 28.7$
		2005 m 1607 m	$\delta(\mathrm{NH}_2)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m	CH ₃ H hydride		$J_{AB} = 25.6$ $J_{AC} = 28.7$ $J_{BC} = 15.0$
	[OsH(CH ₃)/HNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w		2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m	CH ₃ H hydride CH ₂	A ₂ BC	$J_{AB} = 25.6$ $J_{AC} = 28.7$ $J_{BC} = 15.0$ $\delta_A = 98.7$
		2005 m 1607 m 3334 w 3268 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m	CH ₃ H hydride CH ₂ NH	A ₂ BC	$J_{AB} = 25.6 J_{AC} = 28.7 J_{BC} = 15.0 \delta_A = 98.7 \delta_B = 94.9$
		2005 m 1607 m 3334 w	$\delta(\mathrm{NH}_2)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d	CH ₃ H hydride CH ₂	A ₂ BC	$J_{AB} = 25.6 J_{AC} = 28.7 J_{BC} = 15.0 \delta_A = 98.7 \delta_B = 94.9 \delta_C = 91.9$
		2005 m 1607 m 3334 w 3268 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03,	CH ₃ H hydride CH ₂ NH CH ₃ NH	A ₂ BC	$J_{AB} = 25.6 J_{AC} = 28.7 J_{BC} = 15.0 \delta_A = 98.7 \delta_B = 94.9 \delta_C = 91.9 J_{AB} = 17.7 $
		2005 m 1607 m 3334 w 3268 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t	CH ₃ H hydride CH ₂ NH CH ₃ NH	A ₂ BC	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ \end{cases}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m	δ(NH ₂) ν(NH) ν(OsH)	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride	-	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \end{cases}$
b		2005 m 1607 m 3334 w 3268 m 2045 m 3359 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH	A2BC	$J_{AB} = 25.6 J_{AC} = 28.7 J_{BC} = 15.0 \delta_A = 98.7 \delta_B = 94.9 \delta_C = 91.9 J_{AB} = 17.7 J_{AC} = 22.0 J_{BC} = 19.0 \delta_A = 100.7 $
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w	δ(NH ₂) ν(NH) ν(OsH)	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂	-	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \delta_A = 100.7 \\ \delta_B = 97.4$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m	$\delta(\rm NH_2)$ $ u(\rm NH)$ $ u(\rm OsH)$ $ u(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂	-	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \delta_A = 100.7 \\ \delta_B = 97.4 \\ \delta_C = 93.0 \\ \end{cases}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₂ CH ₃	-	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \delta_A = 100.7 \\ \delta_B = 97.4 \\ \delta_C = 93.0 \\ J_{AB} = 16.1 \\ \end{cases}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m	$\delta(\rm NH_2)$ $ u(\rm NH)$ $ u(\rm OsH)$ $ u(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂	-	$J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \delta_A = 100.7 \\ \delta_B = 97.4 \\ \delta_C = 93.0 \\ J_{AB} = 16.1 \\ J_{AC} = 22.4 \\ \end{cases}$
b c	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ [OsH(C ₆ H ₅ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ ^e	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m	$\frac{\delta(\mathrm{NH}_2)}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\delta(\mathrm{NH}_2)}$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride	A ₂ BC	$\begin{array}{c} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \end{array}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂	-	$\begin{array}{l} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \delta_A = 84.6 \end{array}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ [OsH(C ₆ H ₅ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ ^e	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m	$\frac{\delta(\mathrm{NH}_2)}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\delta(\mathrm{NH}_2)}$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₃ H hydride	A ₂ BC	$\begin{array}{l} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \delta_A = 84.6\\ \delta_B = 77.9\\ \end{array}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ [OsH(C ₆ H ₅ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ ^e	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m	$\frac{\delta(\mathrm{NH}_2)}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\nu(\mathrm{NH})}$ $\frac{\nu(\mathrm{OsH})}{\delta(\mathrm{NH}_2)}$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m 2.97 br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₂ CH ₂ NH ₂	A ₂ BC	$\begin{array}{l} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \delta_A = 84.6 \end{array}$
b	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ [OsH(C ₆ H ₅ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ ^e	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m 3266 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₃ H hydride	A ₂ BC	$\begin{array}{l} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \delta_A = 84.6\\ \delta_B = 77.9\\ \end{array}$
2	$[OsH(CH_3NHNH_2)(PPh_2OEt)_4]BPh_4$ $[OsH(C_6H_5NHNH_2)(PPh_2OEt)_4]BPh_4^e$ $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4](BPh_4)_2$	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m 3266 m 1617 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\delta(\rm NH_2)$ $\delta(\rm NH_2)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m 2.97 br 1.33, 1.28 t	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₂ CH ₂ NH ₂ CH ₃	A_2BC A_2B_2	$\begin{array}{l} J_{AB} = 25.6 \\ J_{AC} = 28.7 \\ J_{BC} = 15.0 \\ \delta_A = 98.7 \\ \delta_B = 94.9 \\ \delta_C = 91.9 \\ J_{AB} = 17.7 \\ J_{AC} = 22.0 \\ J_{BC} = 19.0 \\ \delta_A = 100.7 \\ \delta_B = 97.4 \\ \delta_C = 93.0 \\ J_{AB} = 16.1 \\ J_{AC} = 22.4 \\ J_{BC} = 17.9 \\ \delta_A = 84.6 \\ \delta_B = 77.9 \\ J_{AB} = 43.2 \end{array}$
2	[OsH(CH ₃ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ [OsH(C ₆ H ₅ NHNH ₂)(PPh ₂ OEt) ₄]BPh ₄ ^e	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m 3266 m 1617 m 3345 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\delta(\rm NH_2)$ $\nu(\rm NH)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m 2.97 br 1.33, 1.28 t 5.03 br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₂ NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ CH ₃	A ₂ BC	$\begin{array}{l} J_{AB} = 25.6\\ J_{AC} = 28.7\\ J_{BC} = 15.0\\ \delta_A = 98.7\\ \delta_B = 94.9\\ \delta_C = 91.9\\ J_{AB} = 17.7\\ J_{AC} = 22.0\\ J_{BC} = 19.0\\ \delta_A = 100.7\\ \delta_B = 97.4\\ \delta_C = 93.0\\ J_{AB} = 16.1\\ J_{AC} = 22.4\\ J_{BC} = 17.9\\ \delta_A = 84.6\\ \delta_B = 77.9\\ J_{AB} = 43.2\\ \end{array}$
b c	$[OsH(CH_3NHNH_2)(PPh_2OEt)_4]BPh_4$ $[OsH(C_6H_5NHNH_2)(PPh_2OEt)_4]BPh_4^e$ $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4](BPh_4)_2$	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m 3266 m 1617 m 3345 m 3304 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\delta(\rm NH_2)$ $\delta(\rm NH_2)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m 2.97 br 1.33, 1.28 t 5.03 br 4.20-3.90 m	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₂ CH ₂ NH ₂ CH ₂ NH ₂ CH ₃	A_2BC A_2B_2	$\begin{array}{l} J_{AB}=25.6\\ J_{AC}=28.7\\ J_{BC}=15.0\\ \delta_{A}=98.7\\ \delta_{B}=94.9\\ \delta_{C}=91.9\\ J_{AB}=17.7\\ J_{AC}=22.0\\ J_{BC}=19.0\\ \delta_{A}=100.7\\ \delta_{B}=97.4\\ \delta_{C}=92.0\\ J_{AB}=16.1\\ J_{AC}=22.4\\ J_{BC}=17.9\\ \delta_{A}=84.6\\ \delta_{B}=77.9\\ J_{AB}=43.2\\ \end{array}$
b c b	$[OsH(CH_3NHNH_2)(PPh_2OEt)_4]BPh_4$ $[OsH(C_6H_5NHNH_2)(PPh_2OEt)_4]BPh_4^e$ $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4](BPh_4)_2$	2005 m 1607 m 3334 w 3268 m 2045 m 3359 m 3327 w 3259m 2045 m 1611 m 3372 m 3315 m 3299 m 3266 m 1617 m 3345 m	$\delta(\rm NH_2)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\nu(\rm NH)$ $\nu(\rm OsH)$ $\delta(\rm NH_2)$ $\delta(\rm NH_2)$	2.35 s 1.27, 1.20, 1.13, 0.95 t -8.06 to -8.79 m 3.70-2.90 m 2.41 m 1.53 d 1.22, 1.10, 1.03, 0.64 t -8.02 to -8.75 m 5.20 br 4.60 m, br 3.40-3.00 m 0.85, 0.76, 0.59 t -7.36 to -8.09 m 4.81 br 4.15-3.90 m 2.97 br 1.33, 1.28 t 5.03 br	CH ₃ H hydride CH ₂ NH CH ₃ NH CH ₃ H hydride NH OsNH ₂ CH ₂ CH ₃ H hydride OsNH ₂ CH ₂ NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ CH ₃	A_2BC A_2B_2	$\begin{array}{l} J_{AB}=25.6\\ J_{AC}=28.7\\ J_{BC}=15.0\\ \delta_{A}=98.7\\ \delta_{B}=94.9\\ \delta_{C}=91.9\\ J_{AB}=17.7\\ J_{AC}=22.0\\ J_{BC}=19.0\\ \delta_{A}=100.7\\ \delta_{B}=97.4\\ \delta_{C}=93.0\\ J_{AB}=16.1\\ J_{AC}=22.4\\ J_{BC}=17.9\\ \delta_{A}=84.6\\ \delta_{B}=77.9\\ J_{AB}=43.2\\ \end{array}$

Mono- and Bis(hydrazine) Complexes of Os(II)


Table 3 (Continued)

	compound	IR ^a		1 H NMR ^{b,c}		spin	³¹ P{ ¹ H} NMR ^{b,}
no.	formula	(cm^{-1})	assgnt	(ppm)	assgnt	syst	(ppm; <i>J</i> , Hz)
4c	$[Os(C_6H_5NHNH_2)_2\{P(OEt)_3\}_4](BPh_4)_2^e$	3309 m	$\nu(\text{NH})$	6.38 br	OsNH ₂	A_2B_2	$\delta_A = 85.8$
		3285 m		4.55-3.30 m	CH ₂		$\delta_{\rm B} = 76.7$
		3229 m	S(NILL)	1.40, 1.38 t	CH ₃		$J_{\rm AB} = 42.9$
0	$[O_{\alpha}((CU), NNU)] (D(OEt)) (DDb) \ell$	1601 m	$\delta(\rm NH_2)$	5 15 ha	OaNH	A D	8 - 82.2
le	$[Os{(CH_3)_2NNH_2}_2{P(OEt)_3}_4](BPh_4)_2^e$	3326 m 3301 m	$\nu(\text{NH})$	5.45 br 4.43-4.20 m	OsNH ₂ CH ₂	A_2B_2	$\delta_{\rm A} = 83.2$ $\delta_{\rm B} = 77.6$
		1607 m	$\delta(\mathrm{NH}_2)$	2.67 s	(CH_2) $(CH_3)_2N$		$J_{AB} = 44.1$
		1007 111	0(1(112)	1.41, 1.37 t	CH ₃		VAB 11.1
5a	$[Os(NH_2NH_2)_2{PPh(OEt)_2}_4](BPh_4)_2$	3349 m	$\nu(\rm NH)$	4.80 m, br	OsNH ₂		108.1 s
L X		3313 w	. ,	3.90-3.60 m	CH_2		
		3289 w		2.26 m, br	NH_2		
		3259 m	0	1.25, 1.22 t	CH_3		
-		1616 m	$\delta(\text{NH}_2)$	5 01 1			100.0
b	$[Os(CH_3NHNH_2)_2\{PPh(OEt)_2\}_4](BPh_4)_2$	3350 m 3314 m	$\nu(\text{NH})$	5.01 m, br	OsNH ₂		108.2 s
		3314 m 3260 m		4.10-3.70 m 3.85 br	CH ₂ NH		
		1618 m	$\delta(\mathrm{NH}_2)$	2.32 d	CH ₃ NH		
		1010 III	0(1112)	$J_{\rm HH} = 6$	CHI3IVII		
				1.27 t	CH ₃		
бc	$[Os(C_6H_5NHNH_2)_2{PPh(OEt)_2}_4](BPh_4)_2$	3326 m	$\nu(\rm NH)$	6.37 br	NH	A_2B_2	$\delta_{\rm A} = 113.9$
		3297 m	. ,	5.45 br	OsNH ₂		$\delta_{\rm B} = 102.9$
		3273 m		3.80-3.20 m	CH ₂		$J_{\rm AB} = 31.9$
		1601 m	$\delta(\text{NH}_2)$	1.21, 1.10 t	CH ₃		
6	$[Os(\eta^2-C_6H_5CONHNH_2){P(OEt)_3}_4](BPh_4)_2$	3271 m	$\nu(\text{NH})$	7.30 br	NH	A_2BC	$\delta_{\rm A} = 88.9$
		3206 w	w(CO)	6.12 m	OsNH ₂		$\delta_{\rm B} = 84.2$
		1633 m 1601 w	$\nu(CO)$ $\delta(NH_2)$	4.17-3.96 m	CH ₂ CH ₃		$\delta_{\rm C} = 71.3$
		1001 w	$O(\mathbf{NH}_2)$	1.32, 1.30, 1.17 t	СП3		$J_{AB} = 40.6$ $J_{AC} = 41.1$
							$J_{\rm BC} = 42.0$
7	$[Os(NH_2NH_2){P(OEt)_3}_5](BPh_4)_2$	3366 w	$\nu(\rm NH)$	4.90 br	OsNH ₂	AB_4	$\delta_{\rm A} = 81.9$
		3318 w	. ,	3.52 m, br	NH ₂		$\delta_{\rm B} = 79.0$
		3270 w		4.20 m	CH_2		$J_{\rm AB} = 40.3$
				1.50, 1.45 t	CH ₃		
Ba	$[Os{\eta^2-NH=C(CH_3)NHNH_2}{P(OEt)_3}_4](BPh_4)_2$	3395 m	$\nu(\text{NH})$	6.40 br	NH=C	AB_2C	$\delta_{\rm A} = 85.4$
		3333 m		5.58 br	NH ₂ and NH		$\delta_{\rm B} = 83.0$
		3290 m	S(NILL)	3.98 m	CH_2		$\delta_{\rm C} = 81.0$
		1647 m	$\delta(\text{NH}_2)$	1.35 s 1.29, 1.26 t	C(CH ₃) CH ₃		$J_{AB} = 41.5$ $J_{AC} = 42.9$
				9.29 br e	NH=C		$J_{\rm AC} = 42.9$ $J_{\rm BC} = 43.4$
				7.08 br	OsNH ₂		VBC 15.1
				4.20 m	CH ₂		
				2.24 s	$C(CH_3)$		
				1.35, 1.34, 1.32 t	CH_3		
Bb	$[Os{\eta^2-NH=C(CH_3)N(CH_3)NH_2}{P(OEt)_3}_4](BPh_4)_2$	3399 m	$\nu(\text{NH})$	6.26 m, br	OsNH ₂	ABC_2	$\delta_{\rm A} = 84.8$
		3313 w		5.76 br	NH=C		$\delta_{\rm B} = 81.7$
		3264 m 1640 m	$\delta(\rm NH_2)$	4.10-3.90 m 2.57, 1.67 s	$CH_2 \\ CH_3$		$\delta_{\rm C} = 81.6$
		1040 III	$O(1411_2)$	1.31, 1.27, 1.26 t	CH ₃ phos		$J_{AB} = 40.3$ $J_{AC} = 39.2$
				1.51, 1.27, 1.20 t	eriş pilos		$J_{\rm BC} = 42.8$
9a	$[Os{\eta^2-NH=C(4-CH_3C_6H_4)NHNH_2}{P(OEt)_3}_4](BPh_4)_2^e$	3395 m	$\nu(\text{NH})$	9.79 br	NH=C	AB ₂ C	$\delta_{\rm A} = 86.0$
		3330 m		7.42	OsNH ₂	2 -	$\delta_{\rm B} = 84.8$
		3292 m		4.24 br	CH ₂		$\delta_{\rm C} = 84.1$
		1636 m	$\delta(\text{NH}_2)$	2.38 s	CH ₃ C ₆ H ₄		$J_{\rm AB} = 41.1$
				1.37, 1.36, 1.32 t	CH ₃		$J_{\rm AC} = 43.8$
ь	$\left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \left(A \right) C \Pi \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \right] \left[O_{\alpha} \left[m^{2} N \Pi - C \right] \left[O_{\alpha} $	2207	a (NILI)	6 10 m hr	OaNH	APC	$J_{\rm BC} = 42.8$
)b	$[Os{\eta^2-NH=C(4-CH_3C_6H_4)N(CH_3)NH_2}{P(OEt)_3}_4](BPh_4)_2$	3397 m	$\nu(\text{NH})$	6.49 m, br 6.06 m, br	OsNH ₂ NH=C	AB_2C	$\delta_A = 84.9$ $\delta_B = 81.7$
		3273 m 3230 w		6.06 m, br 4.04 m	CH_2		$\delta_{\rm B} = 81.7$ $\delta_{\rm C} = 81.1$
		1625 m	$\delta(NH_2)$	2.63, 2.45 s	CH ₂ CH ₃		$J_{AB} = 40.8$
		1020 111	· (. (.1.2)	1.34, 1.30, 1.27 t	CH ₃ phos		$J_{\rm AC} = 42.7$
				··· , ··· , ··· / ·			$J_{\rm BC} = 43.3$
1b	$[Os(CH_3N=NH)_2{P(OEt)_3}_4](BPh_4)_2$			14.0 s,br	NH	A_2B_2	$\delta_{\rm A} = 82.7$
				3.97 m	CH_2		$\delta_{\rm B} = 76.5$
				3.71 s	CH ₃ N		$J_{\rm AB} = 43.3$
		1500		1.30, 1.23 t	CH ₃	4.5	\$ 100 1
12	$[Os(\eta^2-O_2CCH_3)\{P(OEt)_3\}_4]BPh_4$	1523 m	$\nu(CO)$	4.04 m	CH ₂	A_2B_2	$\delta_{\rm A} = 100.4$
							$\delta_{\rm B} = 78.0$
				1.27, 1.23 l	CH3		$J_{\rm AB} = 38.7$
				1.78 s 1.29, 1.25 t	CCH ₃ CH ₃		

^a In KBr. ^b In CD₂Cl₂ at 25 °C. ^c Phenyl proton resonances are omitted. ^d Positive shift downfield from 85% H₃PO₄. ^e In (CD₃)₂CO at 25 °C.

too, of a *trans* arrangement of the NH_2NH_2 and the CH_3NHNH_2 ligands in complexes containing the $PPh(OEt)_2$ as an ancillary ligand.

Treatment of the dihydride OsH_2P_4 first with methyl triflate, then with triflic acid, and finally with an excess of benzoylhydrazine gives the $[Os(\eta^2-C_6H_5CONHNH_2){P(OEt)_3}_4]^{2+}$ (6) cation, which was separated as BPh₄ salt and characterized. As for the related hydrazine complexes, the infrared spectrum shows the bands due to the ν (NH) at 3271 and 3206 cm⁻¹ and that due to the δ (NH₂) at 1601 cm⁻¹ of the NHNH₂ group. At 1633 cm⁻¹ is also present a medium-intensity band attributed to the coordinated carbonyl group of the benzoylhydrazine. The ¹H NMR spectrum confirms the proposed formulation showing, apart from the resonances of the P(OEt)₃ and the BPh₄⁻ protons,

Figure 1. ORTEP view of the $[Os(NH_2NH_2)_2\{P(OEt)_3\}_4]^{2+}$ cation of **4a**. Ethyl groups are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are evidenced as dashed lines.

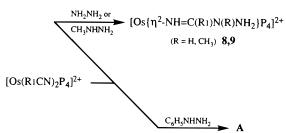
Scheme 2

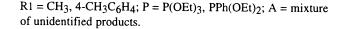
$$[OsH{P(OEt)_3}_5]^+ \xrightarrow{HBF_4Et_2O}_{CH_2Cl_2. -78 \, ^\circ C} [Os(\eta^2 - H_2){P(OEt)_3}_5]^{2+} \rightarrow \frac{excess NH_2NH_2}{-H_2} [Os(NH_2NH_2){P(OEt)_3}_5]^{2+}$$
7

Table 4. Most Relevant Bond Distances (Å) and Angles (deg) with Esd's in Parentheses

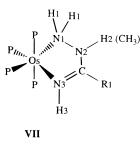
Distances								
Os-P1	2.300(6)	P3-07	1.536(16)					
Os-P2	2.232(6)	P3-O8	1.620(13)					
Os-P3	2.316(7)	P3-09	1.57(2)					
Os-P4	2.260(6)	P4-O10	1.536(19)					
P1-01	1.615(16)	P4-011	1.615(14)					
P1-O2	1.544(13)	P4-012	1.538(19)					
P1-O3	1.573(17)	Os-N1	2.200(14)					
P2-O4	1.516(19)	Os-N3	2.193(15)					
P2-O5	1.507(19)	N1-N2	1.446(28)					
P2-06	1.607(18)	N3-N4	1.412(27)					
Angles								
N1-Os-N3	85.4(6)	Os-P1-O3	112.2(7)					
P4-Os-N3	175.3(4)	Os-P1-O2	118.7(6)					
P4-Os-N1	90.0(4)	Os-P1-O1	112.6(6)					
P3-Os-N3	89.2(5)	Os-P2-O6	110.1(7)					
P3-Os-N1	93.4(4)	Os-P2-O5	116.6(7)					
P3-Os-P4	92.0(2)	Os-P2-O4	116.3(7)					
P2-Os-N3	89.2(4)	Os-P3-O9	122.4(8)					
P2-Os-N1	172.6(4)	Os-P3-O8	109.8(5)					
P2-Os-P4	95.3(2)	Os-P3-O7	113.9(7)					
P2-Os-P3	91.6(2)	Os-P4-O12	120.7(7)					
P1-Os-N3	86.0(5)	Os-P4-O11	106.3(5)					
P1-Os-N1	83.5(4)	Os-P4-O10	116.0(6)					
P1-Os-P4	92.6(2)	Os-N1-N2	117.7(12)					
P1-Os-P3	174.4(2)	Os-N3-N4	118.0(13)					
P1-Os-P2	91.1(2)							

one broad signal at 6.12 ppm and one, partially masked by the phenyl protons, at 7.30 ppm attributed to the NH₂ and NH protons, respectively, of the $C_6H_5CONHNH_2$ ligand. Finally, the ³¹P NMR spectrum appears as a A₂BC multiplet, in agreement with the presence of a chelate benzoylhydrazine ligand of the type schematized in geometry **V**.

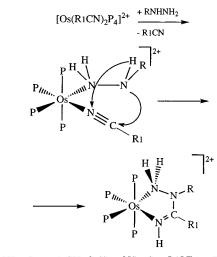

Monohydrazinepentakis(phosphite)[Os(NH₂NH₂){P(OEt)₃}₅]- $(BPh_4)_2$ (7) complex was also prepared by reacting the hydride $[OsH{P(OEt)_3}_5]BPh_4$ first with an equivalent amount of HBF₄. Et₂O and then with an excess of hydrazine, as shown in Scheme 2. Protonation reaction of $[OsHP_5]^+$ with HBF₄·Et₂O results in the formation of an η^2 -H₂ complex which is thermally unstable and cannot be isolated. The ¹H NMR spectra of the CD₂Cl₂ solution, however, confirm the presence of the dihydrogen complex showing a broad signal at -7.0 ppm with a $T_1(\min)^{24}$ of 8 ms (210 K) at 200 MHz. Substitution of the labile η^2 -H₂ ligand with hydrazine affords the [Os(NH₂NH₂)- $\{P(OEt)_3\}_5\}^{2+}$ derivative which was isolated as the BPh₄⁻ salt and characterized (Table 3). The ¹H NMR spectrum shows two NH₂ signals at 4.90 and 3.52 ppm in agreement with a η^1 -coordination of the NH₂NH₂ ligand. Furthermore, the IR spectrum confirms the presence of the hydrazine group showing the characteristic ν (NH) bands at 3366–3270 cm⁻¹. Finally, the ${}^{31}P{}^{1}H$ NMR spectrum appears as an AB₄ multiplet in agreement with the presence of a type-VI geometry for the complex.


X-ray Crystal Structure of [Os(NH₂NH₂)₂{P(OEt)₃}₄]-(BPh₄)₂ (4a). The asymmetric unit contains one [Os(NH₂NH₂)₂- $\{P(OEt)_3\}_4\}^{2+}$ cation, displayed in Figure 1, two BPh₄⁻ anions, and one ethanol molecule. Relevant parameters regarding the cation geometry are listed in Table 4. The metal coordination is octahedral and involves four phosphorus atoms and two nitrogens, the latter in cis each other. The two Os-P bonds situated in *trans* to the hydrazine ligands (Os-P2 = 2.232(6)) Å, Os-P4 = 2.260(6) Å) are slightly shorter than those involving P1 and P3 (Os-P1 = 2.300(6) Å, Os-P3 = 2.316(7)Å), which are in *trans* to each other, due to different electronic influence of the two kinds of ligands. The angles between cis phosphorus atoms fall in the range $91.1-95.3^{\circ}$, while the angles between phosphorus and nitrogens are smaller, ranging from 83.5 to 93.4°, due to the steric hindrance of the $P(OEt)_3$ groups and to intramolecular hydrogen bonds, as discussed later on. The average Os–N bond length is 2.196 Å, slightly longer than the one found in [OsBr(NH₂NH₂)(CO)₂(PPh₃)₂]CF₃SO₃,^{3b} where the nitrogen atom is placed at 2.181 Å from the metal and *trans* to a carbonyl group. This is the only other osmium-hydrazine complex whose crystal structure has been determined so far. In both compounds hydrazine approaches the metal at an angle very close to 120°, while the remaining angles on N1 and N3 are close to tetrahedral values, reflecting the sp³ hybridization of the nitrogen atoms bonded to the metal. Hydrazines form a network of intramolecular hydrogen bonds: $N2 \cdot \cdot \cdot N4 = 3.00(3)$ $\text{\AA}, \text{N2}-\text{H}\cdots\text{N4} = 105(8)^\circ, \text{N1}\cdots\text{O3} = 2.79(2), \text{N1}-\text{H}\cdots\text{O3} =$ $104(3)^{\circ}$, N1···O11 = 2.80(2) Å, N1-H···O11 = 144(6)^{\circ}, N3···- $O1 = 2.87(2), N3 - H - O1 = 129(9)^{\circ}, N3 - O8 = 2.91(2), N3 = 2.91(2), N3 - O8 = 2.91(2), N3 = 2.91(2),$ $H \cdot \cdot \cdot O8 = 101(9)^{\circ}$. As a result, the approximate directions of the lone pairs belonging to N2 (lp2) and N4 (lp4) are differently oriented with respect to the Os-N bond, with Os-N1-N2 $lp2 = -60^{\circ}$ and $Os-N3-N4-lp4 = 20^{\circ}$.

Nitrogens are not involved in any intermolecular contact shorter than 3.8 Å. The ethanol molecule found in the crystal does not participate in any close contact with either cations or anions; this justifies its high thermal mobility and suggests that the crystal decomposition observed during data collection is due to solvent loss.


Amidrazone complexes. The results obtained on the synthesis of mono- and bis(hydrazine) complexes of osmium(II)1-7 prompted us to extend these studies to other osmium

Scheme 3



derivatives with the aim to verify whether new hydrazine derivatives may be prepared. We therefore prepared the new bis(nitrile) derivatives $[Os(R1CN)_2P_4](BPh_4)_2$ and studied their reaction with hydrazines RNHNH₂ observing that the same reaction depends on the nature of the substituent R on the hydrazines, as shown in Scheme 3. While with arylhydrazines such as $C_6H_5NHNH_2$ the reaction proceeds in reflux conditions to give a mixture of unidentified products, with hydrazine NH₂-NH₂ or methylhydrazine CH₃NHNH₂, instead, the reaction afforded a white solid which was characterized as an amidrazone²⁵ complex of the type $[Os{\eta^2-NH=C(R1)N(R)NH_2}P_4]$ -(BPh₄)₂ (**8**, **9**) whose geometry is schematized in **VII**. However,

only with the P(OEt)₃ ligand the amidrazone complexes were prepared in pure form, while with the related $PPh(OEt)_2$ compounds only intractable oils or mixtures of difficult separation were always obtained. The compounds 8 and 9 are white solids stable in the air and in solution of polar organic solvents where they behave as 2:1 electrolytes.²² The elemental analyses and the IR and NMR spectra (Table 3) support the proposed formulation. In particular, the infrared shows the ν (NH) and the $\delta(NH_2)$ bands of the amidrazone ligand as weak- or mediumintensity absorptions at 3399-3230 cm⁻¹ and at 1647-1625 cm⁻¹, respectively. The ¹H NMR spectra show, apart from the signals of the phosphites and of the BPh₄⁻, two or three NH signals which were assigned, by homodecoupling experiments and accurate integration, to the H1, H2, and H3 protons (Table 3) of the chelate amidrazone ligand of the type of geometry **VII.** The ${}^{31}P{}^{1}H$ NMR spectra confirm such a geometry showing for all the compounds an AB₂C or ABC₂ multiplet which can be easily simulated with the parameters reported in Table 3.

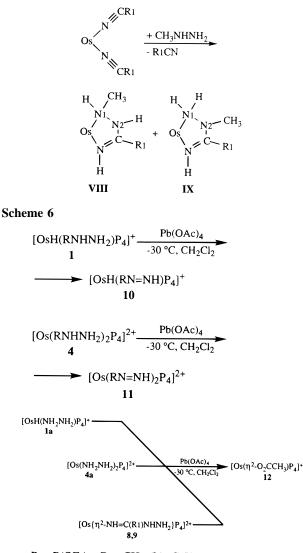
The formation of an amidrazone complex from the reaction of a coordinated nitrile with an hydrazine or methylhydrazine molecule is not surprising taking into account the well-known reaction²⁵ of nucleophilic attack of hydrazine on activated nitriles giving, as primary product, an amidrazone molecule. Furthermore, nucleophilic attack upon coordinated nitrile by alcohols, Scheme 4

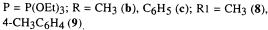
 $R = H, CH_3; R1 = 4-CH_3C_6H_4, CH_3; P = P(OEt)_3, PPh(OEt)_2.$

amines, and carbanions to give iminoethers, amidines, and imines is well established, 26-28 and therefore, a similar reaction is expected to take place also with hydrazine as a nucleophilic reagent.²⁹ Finally, related amidrazone complexes [Fe{ η^2 -NH=C(R1)NHNH₂}P₄](BPh₄)₂ were previously obtained by us⁹ from hydrazine-nitrile [Fe(NH₂NH₂)(R1CN)P₄]²⁺ cations, probably through a nucleophilic attack of an end of coordinated NH2-NH₂ to the cyanide carbon atom of the coordinated nitrile, followed by a H-shift, giving a five-membered metallacycle. On these bases, the formation of an amidrazone complex by reacting a bis(nitrile) complex of osmium with hydrazine or methylhydrazine is plausible, although doubt remains on the probable reaction path. Treatment of $[Os(R1CN)_2P_4]^{2+}$ with $RNHNH_2$ (R = H, CH₃) can result in the substitution of only one R1CN ligand affording the $[Os(RNHNH_2)(R1CN)P_4]^{2+}$ intermediate. By nucleophilic attack of one end of the coordinated RNHNH₂ on the nitrile carbon atom of the coordinate nitrile followed by a H-shift, the amidrazone complexes may be obtained (Scheme 4). Since excess of hydrazine is used, base-catalyzed proton transfer can also be a reasonable mechanism for the intramolecular H-shift.

However, the hydrazine can also react directly (without being bonded to the osmium) with the coordinated R1CN group of $[Os(R1CN)_2P_4]^{2+}$ giving the η^1 -amidrazone ligand which, by substitution of the other R1CN, can then give the final chelate

(29) Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.

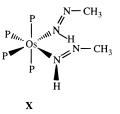

⁽²⁵⁾ Watson, K. M.; Neilson, D. G. In *The Chemistry of Amidines and Imidates*; Patai, S., Ed.; J. Wiley & Sons: London, 1975; p 491.


^{(26) (}a) Maresca, L.; Natile, G.; Intini, F. P.; Gasparrini, F.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Am. Chem. Soc. 1986, 108, 1180. (b) Fanizzi, F. P.; Intini, F. P.; Natile, G. J. Chem. Soc., Dalton Trans. 1989, 947. (c) Cini, R.; Fanizzi, F. P.; Intini, F. P.; Maresca, L.; Natile, G. J. Am. Chem. Soc. 1993, 115, 5123. (d) Paul, P.; Nag, K. Inorg. Chem. 1987, 26, 1586. (e) Thorn, D. L.; Calabrese, J. C. J. Organomet. Chem. 1984, 272, 283.

^{(27) (}a) Amodio, C. A.; Nolan, K. B. *Inorg. Chim. Acta* 1986, *113*, 27. (b) Syamala, A.; Chakravarty, A. R. *Inorg. Chem.* 1991, *30*, 4699. (c) Feng, S. G.; White, P. S.; Templeton, J. L. *Organometallics* 1993, *12*, 1765. (d) Fairlie, D. P.; Jackson, W. G. *Inorg. Chem.* 1990, *29*, 140.

^{(28) (}a) Uchiyama, T.; Takagi, K.; Matsumoto, K.; Ooi, S.; Nakamura, Y.; Kawaguchi, S. *Chem. Lett.* **1979**, 1197; *Bull. Chem. Soc. Jpn.* **1981**, 54, 1077. (b) Kanda, Z.; Nakamura, Y.; Kawaguchi, S. *Inorg. Chem.* **1978**, 17, 910. (c) Michelin, R. A.; Mozzon, M.; Berin, P.; Bertani, R.; Benetollo, F.; Bombieri, G.; Angelici, R. J. *Organometallics* **1994**, 13, 1341. (d) Braunstein, P.; Matt, D.; Dusausoy, Y.; Fischer, J. *Organometallics* **1983**, 2, 1410. (e) Vicente, J.; Chicote, M.-T.; Fernandez-Baeza, J.; Lahoz, F. J.; Lopez, J. A. *Inorg. Chem.* **1991**, 30, 3617.

Scheme 5

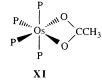

complex. In this case the reaction with methylhydrazine, which possesses two possible sites for an attack, might give the two compounds **VIII** and **IX** (Scheme 5). Furthermore, if the reaction on coordinated nitrile parallels that of free R1CN, the N1-substituted amidrazone **VIII** would be the predominant product. The exclusive formation of the compound **IX** (geometry **VII**) in our case seems, therefore, to suggest a reaction path that involves the substitution of one R1CN followed by the nucleophilic attack as shown in Scheme 4. Although a nitrile—hydrazine [Os(RNHNH₂)(R1CN)P₄]²⁺ intermediate was not detected, such a mechanism is also supported by the results previously reported on the reaction of the related bis(nitrile)-iron(II) complexes⁹ with hydrazine.

Oxidation Reactions. Hydrazine complexes of osmium(II) 1–5 react with Pb(OAc)₄ at -30 °C in CH₂Cl₂ to give, in some cases, the corresponding diazene derivatives and in other the acetate complex [Os(η^2 -O₂CCH₃)P₄]BPh₄, as shown in Scheme 6. Studies on these reactions showed, first of all, that only the Os complexes containing the P(OEt)₃ phosphite ligand react with Pb(OAc)₄ to give the diazene or the acetate complexes. The PPh(OEt)₂ or PPh₂OEt derivatives, instead, do not react with Pb(OAc)₄ at low temperature (-30 °C) and the use of different conditions [large excess of Pb(OAc)₄ or higher temperature] lead only to decomposition products.

Both the mono $[OsH(RNHNH_2)P_4]^+$ and the bis $[Os-(RNHNH_2)_2P_4]^{2+}$ derivatives of osmium(II) containing substituted hydrazine can be easily oxidized by Pb(OAc)_4 to give the corresponding substituted diazene complexes **10** and **11**, which were isolated and characterized. Confirmation of the presence of the diazene ligand in these complexes is given by the high-frequency signal of the NH groups at 12–15 ppm observed in the ¹H NMR spectra. However, the formulation of the phenyldiazene complexes **10c** and **11c** is also confirmed by a comparison of their spectroscopic properties with those of the same derivatives $[OsH(C_6H_5N=NH)P_4]BPh_4$ and $[Os(C_6H_5N=NH)P_2P_4](BPh_4)_2$ previously prepared by us from the reaction of hydride species OsH_2P_4 with the phenyldiazonium cation.^{8f}

Interesting, in this context, is the reaction of the methylhydrazine derivative with Pb(OAc)₄ which allows the synthesis of a rare example³⁰ of methyldiazene complex which, of course, cannot be obtained from the reaction of a methyldiazonium cation. Oxidation of $[Os(CH_3NHNH_2)_2{P(OEt)_3}_4](BPh_4)_2$ afforded, in fact, $[Os(CH_3N=NH)_2{P(OEt)_3}_4](BPh_4)_2$ (**11b**), which was isolated as a yellow-orange solid and characterized. Also the hydride $[OsH(CH_3NHNH_2)P_4]BPh_4$ can be oxidized by Pb(OAc)₄ to give an orange solid whose ¹H NMR spectrum shows a NH signal at 14.4 ppm suggesting the presence of a diazene ligand. The thermal unstability of the complex, however, prevented its complete characterization. Oxidation of hydrazine complexes giving stable diazene derivatives is reported in a few cases^{3b,c,30,31} and often involves dinuclear complexes with a diazene bridging unit.

The bis(methyldiazene) complex $[Os(CH_3N=NH)_2{P(OEt)_3}_4]$ -(BPh₄)₂ (**11b**) is stable both as a solid and in solutions of polar organic solvents where it behaves as a 2:1 electrolyte.²² Good analytical data were obtained for the compound whose ¹H NMR spectrum shows the characteristic, slightly broad diazene signal at 14.0 ppm (Table 3). In the proton spectrum also the signal of the methyl substituent of the CH₃N=NH ligand is present as a sharp singlet at 3.71 ppm together with the P(OEt)₃ and BPh₄ signals. Furthermore, the ³¹P spectrum appears as a symmetric A₂B₂ multiplet suggesting that the two diazene ligands are in a mutually *cis* position as in a type-**X** geometry.


The results obtained on the reaction of substituted hydrazine with $Pb(OAc)_4$ prompted us to extend these studies to the related NH_2NH_2 complexes in an attempt to prepare the 1,2-diazene OsNH=NH derivative. Unfortunately, the reaction of both the $[OsH(NH_2NH_2)P_4]^+$ (**1a**) and $[Os(NH_2NH_2)_2P_4]^{2+}$ (**4a**) cations with an excess of $Pb(OAc)_4$ proceeds to give a pale-yellow

⁽³⁰⁾ Smith, M. R., III; Keys, R. L.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 8312. Ackermann, M. N. Inorg. Chem. 1971, 10, 272.

^{(31) (}a) Smith, M. R., III; Cheng, T.-Y.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 8638. (b) Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1271. (c) Sellmann, D.; Böhlen, E.; Waeber, M;; Huttner, G.; Zsolnai, L. Angew. Chem., Int. Ed. Engl. 1985, 24, 981. (d) Sellmann, D.; Jödden, K. Angew. Chem., Int. Ed. Engl. 1977, 16, 464. (e) Ackermann, M. N.; Dobmeyer, D. J.; Hardy, L. C. J. Organomet. Chem. 1979, 182, 561.

solution from which no diazene derivative was separated but only a white solid characterized as the acetate $[Os(\eta^2-O_2CCH_3) \{P(OEt)_3\}_4]BPh_4$ (12) complex (Scheme 6). The use of an equimolar amount of Pb(OAc)_4 instead of an excess results in the formation only of a mixture of starting materials and of the acetate complex 12. As the starting compounds 1a and 4a are unreactive toward the substitution of the NH₂NH₂ ligand by the acetate ion, it is probable that also in this case the reaction with Pb(OAc)_4 proceeds with the oxidation of the NH₂NH₂ group to give the corresponding diazene NH=NH ligand. This ligand, however, must be rather labile in cations of the type $[OsH(NH=NH)P_4]^+$, $[Os(NH=NH)_2P_4]^{2+}$, or $[Os(NH=NH)(NH_2-NH_2)P_4]^{2+}$ and can be easily substituted by the acetate ion affording the found chelate $[Os(\eta^2-O_2CCH_3)P_4]BPh_4$ derivative.

We also attempted to oxidize the NH₂NH₂ ligands in **1a** and **4a** with different reagents such as O₂, H₂O₂, or (CH₃)₃COOH, but we obtained either the starting complexes or decomposition products which did not show any diazene compound. Furthermore, it can be noted that the acetate complex **12** was also obtained by treating the amidrazone complexes **8** and **9** with Pb(OAc)₄. Finally, the formulation of the complex **12** as an acetate complex comes from the analytical and the spectroscopic data. In particular, the infrared spectrum shows the ν (CO) of the CH₃COO ligand as a medium-intensity band at 1523 cm⁻¹, while in the ¹H NMR spectrum the methyl protons of CH₃COO⁻ group appear as a sharp singlet at 1.78 ppm in CD₂Cl₂ at 25 °C. Furthermore, the ³¹P{¹H} NMR spectrum shows an A₂B₂ multiplet, in agreement with the formulation proposed and schematized in **XI**.

Conclusions. In this contribution we have reported a method for the facile synthesis of mono- and bis(hydrazine) derivatives of osmium of the type $[OsH(RNHNH_2)P_4]^+$, $[Os(RNHNH_2)-P_5]^{2+}$, and $[Os(RNHNH_2)_2P_4]^{2+}$ stabilized by phosphite ligands. The first structural parameters for a bis(hydrazine) complex, $[Os(NH_2NH_2)\{P(OEt)_3\}_4](BPh_4)_2$, are also reported. The reaction of nitrile complexes with hydrazine also allows amidrazone $[Os\{\eta^2-NH=C(R1)N(R)NH_2)\{P(OEt)_3\}_4](BPh_4)_2$ derivatives to be prepared. Among the properties shown by the new osmium hydrazine complexes we can emphasize the easy oxidation of the substituted hydrazine RNHNH_2 ligand by lead tetraacetate to give the corresponding substituted diazene $[OsH(RN=NH)-P_4]^+$ and $[Os(RN=NH)_2P_4]^{2+}$ cations, including the first $[Os-(CH_3N=NH)_2P_4](BPh_4)_2$ bis(methyldiazene) derivative.

Acknowledgment. The financial support of MURST and the CNR, Rome, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

Supporting Information Available: X-ray crystallographic files, in CIF format, for compound **4a** are available on the Internet only. Access information is given on any current masthead page.

IC970463E